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I. Context 
Computing planar maps is a very old problem that has occupied geographers and mathematicians 

for centuries in order to best describe the earth at different scales. To compute a map, two objectives 
come into play: it must be injective (meaning distinct points on earth correspond to distinct points on 
the map) and it must faithfully represent the geometry (that is to say the map distortion is minimal). 
In a modern version of this problem, maps are used to describe complex surfaces or volumes stored 
as meshes in a computer. Discrete geometries are mapped to simpler domains (such as plane or 
sphere) for texture mapping, but more complex target domains are also considered. Of particular 
relevance to us are atlases, which consist of collections of maps with specific constraints along cuts. 
These atlases are typically used for quadrilateral or hexahedral mesh generation [1]. 

Maps are commonly computed using numerical optimization by directly moving the mesh vertices 
to minimize a given distortion measure subject to an injectivity constraint. This measure is often split 
in two parts: the distortion of areas and the distortion of angles. Local preservation of area is a very 
weak requirement as a ball can be arbitrarily distorted into any domain with same volume. 
Consequently, this property alone is rarely used in practical scenarios. On the contrary, angle-
preserving maps, also called conformal, have a long and successful history in map computation for at 
least two reasons. First, it creates maps without shearing and preserves simple structures like circles, 
thus it is well-suited for texture mapping. Second, their governing equations are linear and depend on 
only one function: the scale factor, which represents the ratio between the initial and the deformed 
area at each point. Moreover, in the continuous setting, injectivity is guaranteed without the need for 
an additional non-linear energy.  

However, besides their undeniable benefits, conformal maps have their own shortcomings. The 
main one is that they do not generalize well to volumetric maps. Indeed, conformality in 3D is limited 
to similarities and inversions (see Liouville’s theorem [2]) and thus cannot be used for non-trivial tasks. 
Moreover, for surface mappings, direction constraints can be imposed on boundaries but inner 
constraints are often out of reach [3]. In this thesis, we would like to preserve the benefits of conformal 
mappings, such as a small number of parameters, the ease of computation and the absence of complex 
injectivity penalization, while still being able to compute interesting volumetric maps. 

Idea. We propose to study the set of mappings which are entirely free from shear, thus generalizing 
the concept of conformal maps. Such maps only allow 
independent stretching in two (or three) orthogonal 
directions. Inspired by materials science, we refer to them as 
“orthotropic” maps. Intuitively, on a planar domain, we 
define at each point a reference frame aligned with the 
global refence system and locally attached to the material. 
Our degrees of freedom are the rotation of these frames and 
the independent scaling of the two vectors. More general 
atlases can be computed by employing discontinuous fields 
of frames with specific singularity patters [1]. This 
deformation of the domain transforms infinitesimal squares, 
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initially aligned with the reference frames, into infinitesimal rectangles. This property is essential in 
applications such as mesh generation as discussed in Section III. 

 
Challenges. The goal of this thesis is to develop a framework to study and to numerically compute 

orthotropic mappings with a particular focus on volumetric maps and atlases. 

II. Methodology 
In order to theoretically study orthotropic deformations, we use Cartan’s method of moving frames 

[4]. The main idea is to define a system of orthogonal frames and scale functions that smoothly evolve 
in domain of arbitrary dimension and to characterize when they infinitesimally define a valid 
deformation. More precisely, let 𝑓:ℝ! → ℝ! be a planar orthotropic map, then its Jacobian must be 

such that ∇𝑓 = '𝑒
" 0
0 𝑒#*𝐸

$ , where 𝐸:ℝ! → 𝑆𝑂(2)  is a rotation field and 𝑎, 𝑏:ℝ! → ℝ  are the 

scaling functions. The map is then locally characterized by the necessary condition: ∇ × ∇𝑓 = 0. We 
can rewrite this equation to fully express the infinitesimal rotation, which relates two infinitesimal 
close rotations 𝐸 in terms of 𝑎, 𝑏  and 𝐸 . This necessary (and sufficient in many useful cases) 
integrability condition is linear with respect to 𝑎 and 𝑏. 

To make this theoretical analysis useful for applications, we propose the following tasks: 
Task 1: Orthotropic parametrizations of surfaces. The first step is to explore the theoretical 

foundations of orthotropic deformations for surface texture mapping and quad-remesing. Our goal is 
to discretize and efficiently solve the non-linear integrability equation. At this stage, we assume that 
the positions of the singular vertices of the target quad-mesh are given, meaning that the rotation 
field’s singularities are known and constant. Preliminary results illustrating this PhD proposal have 
already been obtained in collaboration with Keenan Crane (Associate Professor at Carnegie Mellon 
University). 

Task 2: Orthotropic mapping in volumes. The integrability condition for the existence of an 
orthotropic map can be easily extended to the volumetric case. However, this additional dimension 
introduces new challenges. 3D rotations are no longer commutative making the optimization 
significantly more difficult, and as a result, our solver for surface maps may become obsolete. We once 
again assume that rotation field singularities are given as input. However, the map near a singularity 
becomes extremely distorted. Since the singularities now stretch along lines, we need to ensure that 
the discretization has enough degrees of freedom to capture this highly anisotropic effect. Therefore, 
higher-order elements may need to be considered. 

Finally, a more theoretical aspect must be studied: can an orthotropic map incorporate all possible 
valid singularity graphs? An orthotropic map can contain singularity lines, as it is a simple extrusion of 
a surface singular map. However, if a singularity graph has a vertex (an intersection of two or more 
singular lines), is there an orthotropic map with such a singularity configuration? 

Task 3: Singular mappings. Singular graphs are not well understood in theory. While local 
obstructions to the existence of a mapping near a singular edge are well known [5], global results are 
scarce and often very algebraic [6], which makes them challenging to use in practice. Therefore, finding 
a singularity graph such that boundary constraints are enforced is extremely challenging and beyond 
the capabilities of state-of-the-art algorithms. The integrability condition of orthotropic maps offers a 
practical way to find a valid singularity graph by jointly computing the orthotropic scales 𝑎, 𝑏, 𝑐 and a 
rotation field 𝐸 with potential singularities.  

Interestingly, in the case of surfaces, the orthotropic scales 𝑎, 𝑏   are continuous for singularity 
indices 𝑝/2, 𝑝 ∈ ℤ, and can be computed through continuous optimization. These singularities are 
typically created by the principal directions of symmetric matrix and could be very useful when 
designing lattice material for additive manufacturing. However, they are incompatible with meshing 
applications that require 𝑝/4  index singularities. In such cases, the orthotropic scales become 
discontinuous, making the optimization extremely challenging. The simplest algorithm would be to 
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determine, at each step, if the local frames jump depending on the satisfaction of the orthotropic 
integrability criterion. This is highly challenging as numerical errors can lead to false positive cases.  

Task 4: Beyond orthotropy. Our last step is to go beyond orthotropic deformations and discover 
which maps can be computed while keeping two key properties: a characterization by a small number 
of meaningful parameters and convergence under refinement to an injective map. A closer 
examination of the theory reveals that these properties are maintained if the Jacobian of the map 𝑓 
can be written as the product ∇𝑓 = 𝐴𝐸 where 𝐴 ∈ 𝔸 belongs to a commutative matrix Lie group with 
positive determinant, and 𝐸 ∈ 𝔼 belongs to any Lie group with positive determinant. In particular, if 𝔼 
is the special linear group and 𝐴  is the identity matrix, then the map is area-preserving. Other 
combinations can be envisioned, opening the door to many other applications. 

III. Orthotropic map applications for remeshing 
Anisotropic remeshing. The objective of quad (or hex) remeshing is to generate a mesh that 

accurately approximate a target geometry while maintaining a fixed number of elements. When 
approximating a surface using a quad mesh, theoretical findings indicate that the edges should align 
with the principal (orthogonal) curvature directions, and the 
aspect ratio of the elements should be in proportion to the ratio 
of the principal curvatures [7] as in the inset figure. This result is a 
quite intuitive because regions with high curvature demand 
smaller elements for a precise approximation. Similarly, to reduce 
numerical errors in numerical simulations, the mesh should be 
denser in areas where the expected solution exhibits significant 
variations and less dense in areas where the solution is nearly flat. 
Once again, the theory suggests that the most accurate quad (or 
hex) mesh must have edges aligned with the (orthogonal) 
eigenvectors of the function’s Hessian [8]. Clearly, both aspects of 
the approximation problem can be addressed by meshes with 
rectangular (or rectangular cuboid) elements, which can be 
extracted from an orthotropic map. 

 
Numerical simulation. It is well-known that the finite element method exhibits improved 

convergence properties when elements approach perfect squares or cubes, and the convergence is 
not guaranteed in the presence of non-convex elements [9]. By enforcing rectangular elements 
through orthotropic mappings, we not only avoid non-convexity but also fulfill the requirements for 
the optimal convergence of the popular serendipity elements [10]. 

Our colleagues at CEA conducts numerous numerical 
simulations using quad and hex meshes, with a particular focus 
on boundary layer simulations that necessitate highly anisotropic 
elements to capture extreme physical phenomena in directions 
normal to the boundary (for example, Apollo 11 entering the 
atmosphere). In their current workflow, users manually remesh 
their models according to their specific needs, which is a time-
consuming process, often taking weeks for an engineer to obtain 
the desired mesh. The CEA is actively engaged in research to 
reduce the user input during mesh generation. Orthotropic maps 
present a promising solution to address some of these 
challenges. 
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IV. Application and starting date 
The PhD position starts in September or October 2024. The candidate must hold a master in 

computer science or in applied mathematics. Typically, a candidate with knowledge in differential 
geometry or/and finite element method is appreciated. This PhD offers the opportunity to visit (and 
work with) Franck Ledoux from CEA and Keenan Crane from Carnegie Mellon University. Applications 
can be sent in either French or English. To apply for the position, please send a CV to 
etienne.corman@cnrs.fr. 
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